Код продукта :
Косвенный нагрев газа является важным способом в спекании, плавлении, термообработке металлических материалов и стекольной промышленности. По сравнению с прямым нагревом, газовый непрямой нагрев может значительно повысить тепловой КПД и снизить выбросы других вредных газов. В то же время улучшается стабильность температуры, что обеспечивает контроль атмосферы в печи. В то же время во многих процессах промышленного нагрева необходимо изолировать заготовку и среду сгорания. Все это нужно нагревать непрямым излучением. При традиционном непрямом нагреве в основном используется металл или его сплав в качестве трубки радиационного нагрева системы отопления, но до сих пор верхний предел максимальной рабочей температуры различных металлических радиационных трубок составляет всего 1000 °C, что не может обеспечить более высокую температуру нагрева, необходимую для многих процессов. В настоящее время основная проблема заключается в проблеме надежности длительного использования в более высокотемпературных и более сложных средах. Радиантная трубка из спеченного кремния без давления может стабильно использоваться в течение длительного времени в различных коррозионных средах при высокой температуре 1650°C.
Пожалуйста, свяжитесь с нами, если вам нужны индивидуальные услуги. Мы свяжемся с вами по поводу цены и наличия в течение 24 часов.
Информация о продукте
Косвенный нагрев газа является важным способом в спекании, плавлении, термообработке металлических материалов и стекольной промышленности. По сравнению с прямым нагревом, газовый непрямой нагрев может значительно повысить тепловой КПД и снизить выбросы других вредных газов. В то же время улучшается стабильность температуры, что обеспечивает контроль атмосферы в печи. В то же время во многих процессах промышленного нагрева необходимо изолировать заготовку и среду сгорания. Все это нужно нагревать непрямым излучением. При традиционном непрямом нагреве в основном используется металл или его сплав в качестве трубки радиационного нагрева системы отопления, но до сих пор верхний предел максимальной рабочей температуры различных металлических радиационных трубок составляет всего 1000 °C, что не может обеспечить более высокую температуру нагрева, необходимую для многих процессов. В настоящее время основная проблема заключается в проблеме надежности длительного использования в более высокотемпературных и более сложных средах. Радиантная трубка из спеченного кремния без давления может стабильно использоваться в течение длительного времени в различных коррозионных средах при высокой температуре 1650°C.
Синонимы
метанидилидинсиликон; Карборунд; Монокарбид кремния; Betarundum Carborundeum; силицид углерода; Зеленый денсик
Технические характеристики радиантных трубок из карбида кремния (SSiC)
Размеры
По вашему запросу или чертежу
Мы можем настроить по мере необходимости
Свойства (теоретические)
Физические свойства изделий из керамики из карбида кремния без давления
| Физические свойства | ЕДИНИЦА | СГИК |
| (Состав: SiC) | об.% | ≥ 98 |
| Плотность 20°C | г/см³ | >3.10 |
| Открытая пористость | Объем % | 0 |
| (Твердость) 45Н | Р45Н | 93 |
| (Твердость) HV1 | кг/мм² | 2350 |
| (Прочность на изгиб 20°C) | Мпа | 320-400 |
| (Прочность на изгиб 1300°C) | Мпа | 360-410 |
| Коэффициент теплового расширения | 10-6К-1 | 4 |
| (Теплопроводность 20°C ) | ВМ -1К-1 | 116 |
| (Теплопроводность 1200°C | ВМ -1К-1 | 35 |
| (Модуль упругости @ RT ) | GPa | 410 |
| Устойчивость к тепловому удару ) | Отлично | |
| (Макс. Рабочая температура (воздух) ) | °С | Ок. 1600 |
| Удельное электрическое сопротивление | Ω-м | от 1 до 4 10x |
| Удельная теплоёмкость | Дж/кг-К | С 670 по 1180 |
| Прочность на разрыв | МПа (Ultimate) | 210 до 370 |
| Модуль Юнга | GPa | 370 до 490 |
| Точная масса | 39.976927 | |
| Моноизотопная масса | 39.976927 |
Результаты испытаний жидкостей на коррозию
Испытательная среда мг/см2 год)* Коррозионная потеря веса
| (wt%)Conc. Реагент | Температура (°C) | Спекание SiC (БЕЗ Free S i) | Реакционный SiC (12% Si) | Карбид вольфрама (6% Co) | Оксид алюминия (99%) |
| 98%H2SO4 | 100 | 1.8 | 55.0 | >1000 | 65.0 |
| 50%NaOH | 100 | 2.5 | >1000 | 5.0 | 75.0 |
| 53% ВЧ | 25 | <0.2 | 7.9 | 8.0 | 20.0 |
| 85%H 3 PO 4 | 100 | <0.2 | 8.8 | 55.0 | >1000 |
| 70%HNO 3 | 100 | <0.2 | 0.5 | >1000 | 7.0 |
| 45%КОН | 100 | <0.2 | >1000 | 3.0 | 60.0 |
| 25% HCl | 70 | <0.2 | 0.9 | 85.0 | 72.0 |
| 10% ГЧ плюс NO 3 | 25 | <0.2 | >1000 | >1000 | 16.0 |
Время испытания: от 125 до 300 часов погружения при непрерывном перемешивании.
Руководство по снижению веса при коррозии:
>1000 мг/см2 год Полностью разрушается в течение нескольких дней.
100–999 мг/см2 год Не рекомендуется для эксплуатации более месяца
От 50 до 100 мг/см2 год Не рекомендуется для эксплуатации более одного года
От 10 до 49 мг/см2 лет Рекомендуется соблюдать осторожность, исходя из конкретного применения.
От 0,3 до 9,9 мг/см2 год Рекомендуется для длительного использования
<2mg/cm2 y Recommended for long term service; no corrosion, other than as a result of surface cleaning, was evidenced.
Сравнение технических данных для различных материалов из карбида кремния
| Элементы | Единица | RBSiC | ССиК | РСиК |
| Макс. Рабочая температура (воздух) | °С | 1380 | 1650 | 1650 |
| Плотность | г/см³ | ≥3.02 | ≥ 3.10 | 2.60-2.74 |
| Открытая пористость | % | < 0.1 | 0 | 15 |
| Прочность на изгиб | Мпа | 250 (20°C ) | 380 | 100 |
| Мпа | 280 (1200 °C) | 370 | 120 | |
| Модуль упругости | GPA | 330 (20°C ) | 350 | 240 |
| GPA | 300 (1200 °C) | 300 | 200 | |
| Теплопроводность | В/м.к | 40 (1200 °C) | 35 | 10 |
| Коэффициент теплового расширения | К -1 × 10-6 | 4.5 | 4.2 | 4.8 |
| ХВ0,5 | 2200 | 2500 | / | |
| Содержание SiC | % | 85 | 98 | 98.5 |
| Содержание Si | % | 15 | 0 | 0 |
| Кислотостойкий щелочной | Общее | Отлично | Превосходящий |
Преимущества
-Высокая твердость, рейтинг твердости по шкале Мооса 9
-Высокая теплопроводность
-Прочность при высоких температурах
-Его электропроводность между электропроводностью металлов и изоляционных материалов
-Износостойкий
-Коррозионная стойкость
-Легкий
— Низкая плотность
-Высокий модуль Юнга
-Низкий коэффициент теплового расширения
-Устойчивость к химическим реакциям и термическая стойкость
-Выдающаяся стойкость к тепловому удару
-Показатель преломления больше, чем у алмаза
Применение излучающих трубок из карбида кремния
– Перспективная замена традиционным полупроводникам, таким как кремний, в высокотемпературных приложениях.
-Шлифовальные круги и изделия из наждачной бумаги и ткани
-Высокотемпературный кирпич и другие огнеупоры
-Абразивные и режущие инструменты
-Конструкционный материал
-Автомобильные запчасти
-Элементы электронных схем
-Пирометрия тонкой нитью накала
-Поддержка катализатора
Упаковка излучающих трубок из карбида кремния
Стандартная упаковка:
Запечатанные пакеты в картонных коробках. Специальный пакет предоставляется по запросу.
Будучи керамическим материалом, карбид кремния во многих случаях довольно хрупкий. Излучающие трубки из карбида кремния обычно удерживаются в пластиковых пакетах с помощью вакуума и защищены тяжелой пеной.
Излучающие трубки из карбида кремния E FORUs бережно обрабатываются, чтобы свести к минимуму повреждения при хранении и транспортировке и сохранить качество нашей продукции в ее первоначальном состоянии.
Химические идентификаторы
| Линейная формула | Так |
| Номер MDL | MFCD00049531 |
| EC No. | 206-991-8 |
| Beilstein/Reaxys No. | Н/Д |
| Pubchem CID | 9863 |
| Название ИЮПАК | метанидилидинсиликон |
| УЛЫБКИ | [C-]#[Si+] |
| Идентификатор InchI | InChI=1S/CSi/c1-2 |
| Клавиша InchI | HBMJWWWQQXIZIP-UHFFFAOYSA-N |
| CAS # | 409-21-2 |